1213 [Linear Systems]

28MHz, 12V/ms, Single Supply Dual and Quad Precision Op Amps; 以28MHz , 12V / ms的,单电源双和四路精密运算放大器
1213
型号: 1213
厂家: Linear Systems    Linear Systems
描述:

28MHz, 12V/ms, Single Supply Dual and Quad Precision Op Amps
以28MHz , 12V / ms的,单电源双和四路精密运算放大器

运算放大器
文件: 总20页 (文件大小:384K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1213/LT1214  
28MHz, 12V/µs, Single Supply  
Dual and Quad  
Precision Op Amps  
U
DESCRIPTIO  
FEATURES  
TheLT®1213isadual,singlesupplyprecisionopampwith  
a 28MHz gain-bandwidth product and a 12V/µs slew rate.  
The LT1214 is a quad version of the same amplifier. The  
DC precision of the LT1213/LT1214 eliminates trims in  
most systems while providing high frequency perfor-  
mance not usually found in single supply amplifiers.  
Slew Rate: 12V/µs Typ  
Gain-Bandwidth Product: 28MHz Typ  
Fast Settling to 0.01%  
2V Step to 200µV: 500ns Typ  
10V Step to 1mV: 1.1µs Typ  
Excellent DC Precision in All Packages  
Input Offset Voltage: 275µV Max  
Input Offset Voltage Drift: 6µV/°C Max  
Input Offset Current: 40nA Max  
Input Bias Current: 200nA Max  
Open-Loop Gain: 1200V/mV Min  
The LT1213/LT1214 will operate on any supply greater  
than 2.5V and less than 36V total. These amplifiers are  
specified at single 3.3V, single 5V and ±15V supplies, and  
only require 2.7mA of quiescent supply current per ampli-  
fier. The inputs can be driven beyond the supplies without  
damage or phase reversal of the output. The minimum  
output drive is 30mA, ideal for driving low impedance  
loads.  
Single Supply Operation  
Input Voltage Range Includes Ground  
Output Swings to Ground While Sinking Current  
Low Input Noise Voltage: 10nV/Hz Typ  
U
Low Input Noise Current: 0.2pA/Hz Typ  
APPLICATIO S  
Specified at 3.3V, 5V and ±15V  
2.5V Full-Scale 12-Bit Systems: VOS 0.45LSB  
Large Output Drive Current: 30mA Min  
10V Full-Scale 16-Bit Systems: VOS 1.8LSB  
Low Supply Current per Amplifier: 3.5mA Max  
Active Filters  
Photodiode Amplifiers  
Dual in 8-Pin DIP and SO-8  
Quad in 14-Pin DIP and NARROW SO-16  
DAC Current-to-Voltage Amplifiers  
Note: For applications requiring higher slew rate, see the LT1215/LT1216  
data sheet. For lower power and lower slew rate, see the LT1211/LT1212 data  
sheet.  
Battery-Powered Systems  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Frequency Response  
Single Supply 3-Pole 1MHz Butterworth Filter  
10  
0
+
C2  
200pF  
V
0.1µF  
–10  
–20  
–30  
–40  
–50  
–60  
R2  
R3  
R1  
680Ω  
680Ω  
680Ω  
V
+
IN  
1/2  
LT1213  
C3  
390pF  
C1  
V
OUT  
150pF  
4.12k  
5pF  
A
= 2  
V
MAXIMUM OUTPUT OFFSET = 714µV  
4.12k  
10k  
100k  
1M  
10M  
1213/14 TA01  
FREQUENCY (Hz)  
1213/14 TA02  
1
LT1213/LT1214  
W W W  
U
(Note 1)  
ABSOLUTE AXI U RATI GS  
Total Supply Voltage (V+ to V) ............................. 36V  
Input Current ..................................................... ±15mA  
Output Short-Circuit Duration (Note 2)........ Continuous  
Operating Temperature Range  
Storage Temperature Range ................ 65°C to 150°C  
Junction Temperature (Note 3)  
Plastic Package (N8, S8, N, S) ........................ 150°C  
Ceramic Package (J8) (OBSOLETE)................. 175°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
LT1213C/LT1214C ............................ 40°C to 85°C  
LT1213M (OBSOLETE) ............... 55°C to 125°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
ORDER PART  
ORDER PART  
+
NUMBER  
NUMBER  
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
TOP VIEW  
OUT B  
–IN B  
+IN B  
A
+
LT1213CS8  
LT1213CN8  
LT1213ACN8  
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
B
OUT B  
–IN B  
+IN B  
V
A
N8 PACKAGE  
8-LEAD PLASTIC DIP  
TJMAX = 150°C, θJA = 100°C/W (N)  
B
S8 PART MARKING  
1213  
V
S8 PACKAGE  
8-LEAD PLASTIC SOIC  
TJMAX = 150°C, θJA = 150°C/W  
J8 PACKAGE  
8-LEAD CERAMIC DIP  
TJMAX = 175°C, θJA = 100°C/W (J)  
LT1213MJ8  
LT1213AMJ8  
OBSOLETE PACKAGE  
Consider S8 or N8 Packages for Alternate Source  
TOP VIEW  
ORDER PART  
ORDER PART  
NUMBER  
TOP VIEW  
NUMBER  
16  
15  
14  
13  
12  
11  
10  
9
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
8
OUT D  
–IN D  
+IN D  
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
A
B
D
C
LT1214CN  
LT1214CS  
A
B
D
12 +IN D  
+
V
V
+
V
11  
V
+IN B  
–IN B  
OUT B  
NC  
+IN C  
–IN C  
OUT C  
NC  
+IN B  
–IN B  
OUT B  
10 +IN C  
C
9
8
–IN C  
OUT C  
N PACKAGE  
14-LEAD PLASTIC DIP  
JMAX = 150°C, θJA = 70°C/W  
S PACKAGE  
16-LEAD PLASTIC SOIC  
JMAX = 150°C, θJA = 100°C/W  
T
T
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
U
AVAILABLE OPTIO S  
PACKAGE  
NUMBER OF  
OP AMPS  
MAX TC V  
CERAMIC DIP  
(J)  
PLASTIC DIP  
(N)  
SURFACE MOUNT  
(S)  
OS  
T RANGE  
A
MAX V (25°C)  
(V /T)  
OS  
OS  
Two (Dual)  
40°C to 85°C  
150µV  
275µV  
275µV  
150µV  
275µV  
275µV  
1.5µV/°C  
3µV/°C  
6µV/°C  
1.5µV/°C  
3µV/°C  
6µV/°C  
LT1213ACN8  
LT1213CN8  
LT1213CS8  
LT1214CS  
Two (Dual)  
Four (Quad)  
55°C to 125°C  
40°C to 85°C  
LT1213AMJ8  
LT1213MJ8  
LT1214CN  
2
LT1213/LT1214  
5V ELECTRICAL CHARACTERISTICS  
VS = 5V, VCM = 0.5V, VOUT = 0.5V, TA = 25°C, unless otherwise noted.  
LT1213AC  
LT1213AM  
TYP  
LT1213C/LT1213M  
LT1214C  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
TYP  
100  
0.6  
MAX  
UNITS  
µV  
µV/Mo  
V
Input Offset Voltage  
75  
0.5  
150  
275  
OS  
V  
Time  
Long-Term Input Offset  
Voltage Stability  
OS  
I
I
Input Offset Current  
Input Bias Current  
Input Noise Voltage  
Input Noise Voltage Density  
5
80  
200  
10  
10  
30  
160  
5
100  
200  
10  
10  
40  
200  
nA  
nA  
nV  
P-P  
nV/Hz  
nV/Hz  
OS  
B
0.1Hz to 10Hz  
e
f = 10Hz  
n
O
f = 1000Hz  
O
i
Input Noise Current Density  
Input Resistance (Note 4)  
f = 10Hz  
0.9  
0.2  
40  
0.9  
0.2  
40  
pA/Hz  
pA/Hz  
n
O
f = 1000Hz  
O
Differential Mode  
Common Mode  
10  
10  
MΩ  
MΩ  
200  
200  
Input Capacitance  
f = 1MHz  
10  
10  
pF  
Input Voltage Range  
3.5  
0
3.8  
0.3  
3.5  
0
3.8  
0.3  
V
V
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= 0V to 3.5V  
90  
93  
250  
105  
116  
850  
86  
90  
250  
105  
116  
850  
dB  
dB  
V/mV  
CM  
V = 2.5V to 12.5V  
V = 0.05V to 3.7V, R = 500Ω  
S
A
VOL  
O
L
Maximum Output Voltage Swing Output High, No Load  
4.30  
4.20  
3.80  
4.39  
4.30  
3.92  
4.30  
4.20  
3.80  
4.39  
4.30  
3.92  
V
V
V
(Note 5)  
Output High, I  
Output High, I  
= 1mA  
= 20mA  
SOURCE  
SOURCE  
Output Low, No Load  
0.004 0.007  
0.033 0.050  
0.475 0.620  
0.004 0.007  
0.033 0.050  
0.475 0.620  
V
V
V
Output Low, I  
Output Low, I  
= 1mA  
= 20mA  
SINK  
SINK  
I
Maximum Output Current  
Slew Rate  
(Note 10)  
±30  
±50  
8.5  
26  
2.7  
2.2  
1.0  
24  
±30  
±50  
8.5  
26  
2.7  
2.2  
1.0  
24  
mA  
V/µs  
MHz  
mA  
V
MHz  
ns  
%
O
SR  
GBW  
I
A = 2  
V
Gain-Bandwidth Product  
Supply Current per Amplifier  
Minimum Supply Voltage  
Full Power Bandwidth  
Rise Time, Fall Time  
Overshoot  
f = 100kHz  
2.0  
3.8  
2.5  
2.0  
3.8  
2.5  
S
Single Supply, V = 0V  
CM  
A = 1, V = 2.5V  
P-P  
V
O
t , t  
OS  
A = 1, 10% to 90%, V = 100mV  
V O  
r
f
A = 1, V = 100mV  
30  
30  
V
O
t
t
Propagation Delay  
Settling Time  
Open-Loop Output Resistance  
Total Harmonic Distortion  
A = 1, V = 100mV  
17  
500  
50  
17  
500  
50  
ns  
ns  
PD  
S
V
O
0.01%, A = 1, V = 2V  
V
O
I = 0mA, f = 10MHz  
O
THD  
A = 1, V = 1V , 20Hz to 20kHz  
RMS  
0.001  
0.001  
%
V
O
3
LT1213/LT1214  
5V ELECTRICAL CHARACTERISTICS  
VS = 5V, VCM = 0.5V, VOUT = 0.5V, 0°C TA 70°C, unless otherwise noted.  
LT1213AC  
TYP  
LT1213C/LT1214C  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
175  
1.5  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
100  
0.7  
150  
375  
µV  
µV/°C  
µV/°C  
OS  
V  
T  
Input Offset Voltage Drift  
(Note 4)  
8-Pin DIP Package  
14-Pin DIP, SOIC Package  
1
2
3
6
OS  
I
I
Input Offset Current  
Input Bias Current  
Input Voltage Range  
10  
90  
3.5  
45  
190  
10  
110  
3.5  
0.1  
55  
230  
nA  
nA  
V
V
OS  
B
3.4  
0.1  
3.4  
0.1  
0.1  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= 0.1V to 3.4V  
89  
92  
200  
105  
114  
580  
85  
89  
200  
105  
114  
580  
dB  
dB  
V/mV  
CM  
V = 2.5V to 12.5V  
V = 0.05V to 3.7V, R = 500Ω  
S
A
VOL  
O
L
Maximum Output Voltage Swing Output High, No Load  
4.20  
4.10  
3.84  
4.33  
4.25  
3.96  
4.20  
4.10  
3.84  
4.33  
4.25  
3.96  
V
V
V
(Note 5)  
Output High, I  
Output High, I  
= 1mA  
= 15mA  
SOURCE  
SOURCE  
Output Low, No Load  
0.005 0.008  
0.036 0.055  
0.370 0.530  
0.005 0.008  
0.036 0.055  
0.370 0.530  
V
V
V
Output Low, I  
Output Low, I  
= 1mA  
= 15mA  
SINK  
SINK  
I
Supply Current per Amplifier  
1.8  
2.9  
4.0  
1.8  
2.9  
4.0  
mA  
S
VS = 5V, VCM = 0.5V, VOUT = 0.5V, 40°C TA 85°C, unless otherwise noted. (Note 6)  
LT1213AC  
LT1213C/LT1214C  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
120  
0.7  
MAX  
200  
1.5  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
175  
500  
µV  
µV/°C  
µV/°C  
OS  
V  
OS  
Input Offset Voltage Drift  
(Note 4)  
8-Pin DIP Package  
1
2
3
6
14-Pin DIP, SOIC Package  
T  
I
I
Input Offset Current  
Input Bias Current  
Input Voltage Range  
15  
100  
3.2  
0
50  
200  
20  
120  
3.2  
0
75  
250  
nA  
nA  
V
V
OS  
B
3.1  
0.2  
3.1  
0.2  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= 0.2V to 3.1V  
88  
91  
200  
104  
113  
510  
84  
88  
200  
104  
113  
510  
dB  
dB  
V/mV  
CM  
V = 2.5V to 12.5V  
V = 0.05V to 3.7V, R = 500Ω  
S
A
VOL  
O
L
Maximum Output Voltage Swing Output High, No Load  
4.15  
4.00  
3.72  
4.25  
4.16  
3.89  
4.15  
4.00  
3.72  
4.25  
4.16  
3.89  
V
V
V
(Note 5)  
Output High, I  
Output High, I  
= 1mA  
= 15mA  
SOURCE  
SOURCE  
Output Low, No Load  
0.006 0.009  
0.037 0.060  
0.380 0.550  
0.006 0.009  
0.037 0.060  
0.380 0.550  
V
V
V
Output Low, I  
= 1mA  
= 15mA  
SINK  
SINK  
Output Low, I  
I
Supply Current per Amplifier  
1.5  
2.9  
4.0  
1.5  
2.9  
4.0  
mA  
S
4
LT1213/LT1214  
5V ELECTRICAL CHARACTERISTICS  
VS = 5V, VCM = 0.5V, VOUT = 0.5V, 55°C TA 125°C, unless otherwise noted.  
LT1213AM  
TYP  
LT1213M  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
250  
1.5  
MIN  
TYP  
200  
1.0  
MAX  
500  
3.0  
UNITS  
µV  
µV/°C  
V
Input Offset Voltage  
140  
0.7  
OS  
V  
T  
Input Offset Voltage Drift  
(Note 4)  
OS  
I
I
Input Offset Current  
Input Bias Current  
Input Voltage Range  
20  
105  
3.2  
0.2  
70  
210  
25  
125  
3.2  
0.2  
100  
275  
nA  
nA  
V
V
OS  
B
3.1  
0.4  
3.1  
0.4  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= 0.4V to 3.1V  
87  
90  
150  
104  
113  
300  
83  
87  
150  
104  
113  
300  
dB  
dB  
V/mV  
CM  
V = 2.5V to 12.5V  
V = 0.05V to 3.7V, R = 500Ω  
S
A
VOL  
O
L
Maximum Output Voltage Swing Output High, No Load  
4.05  
3.90  
3.60  
4.20  
4.10  
3.80  
4.05  
3.90  
3.60  
4.20  
4.10  
3.80  
V
V
V
(Note 5)  
Output High, I  
Output High, I  
= 1mA  
= 15mA  
SOURCE  
SOURCE  
Output Low, No Load  
0.007 0.012  
0.040 0.070  
0.400 0.750  
0.007 0.012  
0.040 0.070  
0.400 0.750  
mV  
mV  
mV  
Output Low, I  
= 1mA  
= 15mA  
SINK  
SINK  
Output Low, I  
I
Supply Current per Amplifier  
1.3  
3.0  
4.2  
1.3  
3.0  
4.2  
mA  
S
+
ELECTRICAL CHARACTERISTICS  
15V  
VS = ±15V, VCM = 0V, VOUT = 0V, TA = 25°C, unless otherwise noted.  
LT1213AC  
LT1213AM  
TYP  
LT1213C/LT1213M  
LT1214C  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
400  
30  
MIN  
TYP  
150  
5
MAX  
550  
40  
UNITS  
µV  
V
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
Input Voltage Range  
125  
5
70  
OS  
I
I
nA  
nA  
V
V
OS  
150  
90  
190  
B
13.5  
13.8  
–15.0 15.3  
13.5  
13.8  
–15.0 – 15.3  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= –15V to 13.5V  
90  
93  
1200  
13.7  
107  
116  
4000  
13.9  
86  
90  
1200  
13.7  
107  
116  
4000  
13.9  
dB  
dB  
V/mV  
V
CM  
V = ±2V to ±18V  
V = 0V to ±10V, R = 2k  
S
A
VOL  
O
L
Maximum Output Voltage Swing Output High, I  
= 20mA  
SOURCE  
Output Low, I  
(Note 10)  
= 20mA  
–14.3 –14.5  
–14.3 –14.5  
V
SINK  
I
Maximum Output Current  
Slew Rate  
±30  
10  
±50  
12  
±30  
10  
±50  
12  
mA  
V/µs  
MHz  
mA  
dB  
V
kHz  
µs  
O
SR  
GBW  
I
A = 2 (Note 7)  
V
Gain-Bandwidth Product  
Supply Current per Amplifier  
Channel Separation  
Minimum Supply Voltage  
Full-Power Bandwidth  
Settling Time  
f = 100kHz  
15  
28  
15  
28  
2.0  
128  
3.4  
4.7  
2.0  
128  
3.4  
4.7  
S
V = ±10V, R = 2k  
140  
±1.2  
150  
1.1  
140  
±1.2  
150  
1.1  
O
L
Equal Split Supplies  
A = 1, V = 20V  
±2.0  
±2.0  
V
O
P-P  
0.01%, A = 1, V = 10V  
V
O
5
LT1213/LT1214  
+
15V  
ELECTRICAL CHARACTERISTICS  
VS = ±15V, VCM = 0V, VOUT = 0V, 0°C TA 70°C, unless otherwise noted.  
LT1213AC  
TYP  
LT1213C/LT1214C  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
425  
1.5  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
150  
0.7  
200  
650  
µV  
OS  
V  
T  
Input Offset Voltage Drift  
(Note 4)  
8-Pin DIP Package  
14-Pin DIP, SOIC Package  
1
2
3
6
µV/°C  
µV/°C  
OS  
I
I
Input Offset Current  
Input Bias Current  
Input Voltage Range  
10  
90  
35  
160  
10  
95  
13.5  
45  
200  
nA  
nA  
V
V
OS  
B
13.4  
13.5  
–14.9 –15.1  
13.4  
–14.9 –15.1  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= –14.9V to 13.4V  
89  
92  
1000  
13.8  
105  
115  
4000  
14.0  
85  
89  
1000  
13.8  
105  
115  
4000  
14.0  
dB  
dB  
V/mV  
V
CM  
V = ±2V to ±18V  
V = 0V to ±10V, R = 2k  
S
A
VOL  
O
L
Maximum Output Voltage Swing Output High, I  
= 15mA  
SOURCE  
Output Low, I  
= 15mA  
14.4 14.6  
1.8 3.7  
14.4 14.6  
1.8 3.7  
V
mA  
SINK  
I
Supply Current per Amplifier  
5.0  
5.0  
S
VS = ±15V, VCM = 0V, VOUT = 0V, 40°C TA 85°C, unless otherwise noted. (Note 6)  
LT1213AC  
LT1213C/LT1214C  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
175  
0.7  
MAX  
450  
1.5  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
250  
700  
µV  
OS  
V  
OS  
Input Offset Voltage Drift  
(Note 4)  
8-Pin DIP Package  
1
2
3
6
µV/°C  
µV/°C  
14-Pin DIP, SOIC Package  
T  
I
I
Input Offset Current  
Input Bias Current  
Input Voltage Range  
10  
95  
40  
180  
20  
105  
13.2  
75  
220  
nA  
nA  
V
V
OS  
B
13.1  
13.2  
–14.8 –15.0  
13.1  
–14.8 –15.0  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= 14.8V to 13.1V  
88  
91  
1000  
13.7  
104  
114  
4000  
13.9  
84  
88  
1000  
13.7  
104  
114  
4000  
13.9  
dB  
dB  
V/mV  
V
CM  
V = ±2V to ±18V  
V = 0V to ±10V, R = 2k  
S
A
VOL  
O
L
Maximum Output Voltage Swing Output High, I  
= 15mA  
SOURCE  
Output Low, I  
= 15mA  
14.4 14.6  
14.4 14.6  
V
SINK  
I
Supply Current per Amplifier  
1.5  
3.7  
5.1  
1.5  
3.7  
5.1  
mA  
S
VS = ±15V, VCM = 0V, VOUT = 0V, 55°C TA 125°C, unless otherwise noted.  
LT1213AM  
TYP  
LT1213M  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
500  
1.5  
MIN  
MAX  
800  
3
UNITS  
µV  
µV/°C  
V
Input Offset Voltage  
200  
0.7  
300  
1
OS  
V  
T  
Input Offset Voltage Drift  
(Note 4)  
OS  
I
I
Input Offset Current  
Input Bias Current  
Input Voltage Range  
15  
100  
13.2  
–14.6 –14.8  
60  
200  
25  
110  
13.2  
–14.6 –14.8  
90  
250  
nA  
nA  
V
V
OS  
B
13.1  
13.1  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= 14.6V to 13.1V  
87  
90  
800  
13.6  
104  
114  
1100  
13.8  
83  
87  
800  
13.6  
104  
114  
1100  
13.8  
dB  
dB  
V/mV  
V
CM  
V = ±2V to ±15V  
V = 0V to ±10V, R = 2k  
S
A
VOL  
O
L
Maximum Output Voltage Swing Output High, I  
= 15mA  
SOURCE  
Output Low, I  
= 15mA  
–14.2 –14.5  
1.3 4.0  
–14.2 –14.5  
1.3 4.0  
V
mA  
SINK  
I
Supply Current per Amplifier  
5.4  
5.4  
S
6
LT1213/LT1214  
3.3V ELECTRICAL CHARACTERISTICS  
VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, TA = 25°C, unless otherwise noted. (Note 8)  
LT1213AC  
LT1213AM  
TYP  
LT1213C/LT1213M  
LT1214C  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
75  
150  
100  
275  
µV  
OS  
Input Voltage Range (Note 9)  
1.8  
0
2.1  
0.3  
1.8  
0
2.1  
– 0.3  
V
V
Maximum Output Voltage Swing Output High, No Load  
2.60  
2.50  
2.10  
2.69  
2.60  
2.22  
2.60  
2.50  
2.10  
2.69  
2.60  
2.22  
V
V
V
Output High, I  
= 1mA  
= 20mA  
SOURCE  
SOURCE  
Output High, I  
Output Low, No Load  
0.004 0.007  
0.033 0.050  
0.475 0.620  
0.004 0.007  
0.033 0.050  
0.475 0.620  
V
V
V
Output Low, I  
Output Low, I  
= 1mA  
= 20mA  
SINK  
SINK  
I
Maximum Output Current  
±30  
±50  
±30  
±50  
mA  
O
VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, 0°C TA 70°C, unless otherwise noted. (Note 8)  
LT1213AC  
LT1213C/LT1214C  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
100  
175  
150  
375  
µV  
OS  
Input Voltage Range (Note 9)  
1.7  
0.1  
1.8  
0.1  
1.7  
0.1  
1.8  
0.1  
V
V
Maximum Output Voltage Swing Output High, No Load  
2.50  
2.40  
2.14  
2.63  
2.55  
2.26  
2.50  
2.40  
2.14  
2.63  
2.55  
2.26  
V
V
V
Output High, I  
Output High, I  
= 1mA  
= 15mA  
SOURCE  
SOURCE  
Output Low, No Load  
0.005 0.008  
0.037 0.055  
0.400 0.530  
0.005 0.008  
0.037 0.055  
0.400 0.530  
V
V
V
Output Low, I  
Output Low, I  
= 1mA  
= 15mA  
SINK  
SINK  
VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, 40°C TA 85°C, unless otherwise noted. (Note 6, 8)  
LT1213AC  
LT1213C/LT1214C  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
120  
200  
175  
500  
µV  
OS  
Input Voltage Range (Note 9)  
1.4  
0.2  
1.5  
0
1.4  
0.2  
1.5  
0
V
V
Maximum Output Voltage Swing Output High, No Load  
2.45  
2.30  
2.02  
2.55  
2.46  
2.19  
2.45  
2.30  
2.02  
2.55  
2.46  
2.19  
V
V
V
Output High, I  
Output High, I  
= 1mA  
= 15mA  
SOURCE  
SOURCE  
Output Low, No Load  
0.006 0.009  
0.040 0.060  
0.410 0.550  
0.006 0.009  
0.040 0.060  
0.410 0.550  
V
V
V
Output Low, I  
= 1mA  
= 15mA  
SINK  
SINK  
Output Low, I  
VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, 55°C TA 125°C, unless otherwise noted. (Note 8)  
LT1213AM  
LT1213M  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
V
Input Offset Voltage  
130  
250  
200  
500  
µV  
OS  
Input Voltage Range (Note 9)  
1.4  
0.4  
1.5  
0.2  
1.4  
0.4  
1.5  
0.2  
V
V
Maximum Output Voltage Swing Output High, No Load  
2.35  
2.20  
1.90  
2.50  
2.40  
2.10  
2.35  
2.20  
1.90  
2.50  
2.40  
2.10  
V
V
V
Output High, I  
Output High, I  
= 1mA  
= 15mA  
SOURCE  
SOURCE  
Output Low, No Load  
0.007 0.012  
0.040 0.070  
0.500 0.750  
0.007 0.012  
0.040 0.070  
0.500 0.750  
V
V
V
Output Low, I  
Output Low, I  
= 1mA  
= 15mA  
SINK  
SINK  
7
LT1213/LT1214  
ELECTRICAL CHARACTERISTICS  
Note 5: Guaranteed by correlation to 3.3V and ±15V tests.  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: A heat sink may be required to keep the junction temperature  
below absolute maximum when the output is shorted indefinitely.  
Note 6: The LT1213/LT1214 are designed, characterized and expected to  
meet these extended temperature limits, but are not tested at –40°C and  
85°C. Guaranteed I grade parts are available. Consult factory.  
Note 7: Slew rate is measured between ±8.5V on an output swing of ±10V  
on ±15V supplies.  
Note 3: T is calculated from the ambient temperature T and power  
J
A
dissipation P according to the following formulas:  
D
Note 8: Most LT1213/LT1214 electrical characteristics change very little  
with supply voltage. See the 5V tables for characteristics not listed in the  
3.3V table.  
Note 9: Guaranteed by correlation to 5V and ±15V tests.  
Note 10: Guaranteed by correlation to 3.3V tests.  
LT1213MJ8, LT1213AMJ8: T = T + (P ×100°C/W)  
J
A
D
LT1213CN8, LT1213ACN8: T = T + (P ×100°C/W)  
J
A
D
LT1213CS8:  
LT1214CN:  
LT1214CS:  
T = T + (P ×150°C/W)  
J A D  
T = T + (P ×70°C/W)  
J
A
D
T = T + (P ×100°C/W)  
J
A
D
Note 4: This parameter is not 100% tested.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Distribution of Offset Voltage Drift  
with Temperature  
Distribution of Input Offset Voltage  
Distribution of Input Offset Voltage  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
LT1213 J8 PACKAGE  
V
S
= 5V  
LT1213 J8 PACKAGE  
LT1213 N8 PACKAGE  
V
= ±15V  
V
= 5V  
LT1213 J8 PACKAGE  
LT1213 N8 PACKAGE  
S
S
LT1213 N8 PACKAGE  
–1  
1
–3  
–2  
100  
700  
0
2
3
–700 –300 –100  
300 500  
–350  
–150 –50 50  
150 250 350  
–500  
–250  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
OFFSET VOLTAGE DRIFT WITH TEMPERATURE (µV/°C)  
1213/14 G03  
1213/14 G01  
1213/14 G02  
Distribution of Offset Voltage Drift  
Distribution of Input Offset Voltage  
with Temperature  
Distribution of Input Offset Voltage  
70  
60  
50  
40  
30  
20  
10  
0
50  
70  
60  
50  
40  
30  
20  
10  
0
V = 5V  
S
LT1213 S8 PACKAGE  
LT1214 N PACKAGE  
LT1214 S PACKAGE  
LT1213 S8 PACKAGE  
LT1214 N PACKAGE  
LT1214 S PACKAGE  
V
S
= 5V  
LT1213 S8 PACKAGE  
LT1214 N PACKAGE  
LT1214 S PACKAGE  
V
S
= ±15V  
40  
30  
20  
10  
0
–4  
–2  
2
–350  
–150 –50 50  
150 250 350  
–6  
0
4
6
–250  
–700  
–300 –100 100 300  
700  
–500  
500  
INPUT OFFSET VOLTAGE (µV)  
OFFSET VOLTAGE DRIFT WITH TEMPERATURE (µV/°C)  
INPUT OFFSET VOLTAGE (µV)  
1213/14 G04  
1213/14 G06  
1213/14 G05  
8
LT1213/LT1214  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Voltage Gain, Phase vs  
Frequency  
Gain-Bandwidth Product,  
Phase Margin vs Supply Voltage  
Voltage Gain vs Frequency  
100  
80  
32  
30  
28  
26  
24  
22  
20  
140  
120  
100  
80  
60  
40  
PHASE  
C
= 20pF  
= 2k  
L
L
R
T
= –55°C  
A
T
= 25°C  
A
V
= ±15V  
60  
S
GAIN  
T
= 125°C  
= –55°C  
40  
A
V
= 5V  
S
60  
60  
50  
40  
30  
20  
10  
0
20  
20  
T
= 25°C, 125°C  
A
40  
0
T
V
= ±15V  
A
S
V
= 5V  
20  
S
–20  
–40  
–60  
0
C
= 20pF  
R = 2k  
L
V
= ±15V  
S
L
0
V
= 5V  
S
–20  
–20  
100k  
1k 10k 100k  
10M  
100M  
1
10 100  
1M  
1
3
7
10  
40  
20 30  
1M  
10M  
100M  
5
TOTAL SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1213/14 G07  
1213/14 G08  
1213/14 G09  
Slew Rate vs Temperature  
Slew Rate vs Supply Voltage  
Capacitive Load Handling  
18  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
80  
70  
60  
50  
40  
30  
20  
10  
0
A
= –2  
= 10k  
T
= 25°C  
= –2  
= 10k  
V = 5V  
S
V
L
A
V
L
T
= 125°C  
A
R
A
V
S
= ±15V  
R
T
A
= 25°C  
A
= 1  
= 5  
V
V
S
= 5V  
T
A
= –55°C  
6
A
V
6
4
A
V
= 10  
2
4
25  
–50  
0
50  
75 100 125  
–25  
0
4
8
12 16 20 24 28 32 36  
10  
100  
1000  
TEMPERATURE (°C)  
CAPACITIVE LOAD (pF)  
TOTAL SUPPLY VOLTAGE (V)  
1213/14 G10  
1213/14 G11  
1213/14 G12  
Undistorted Output Swing  
vs Frequency, VS = 5V  
Undistorted Output Swing  
Total Harmonic Distortion and  
Noise vs Frequency  
vs Frequency, VS = ±15V  
30  
25  
20  
15  
10  
5
0.1  
5
4
3
2
1
0
V
V
= 5V  
= 3V  
= 1k  
V
= 5V  
S
O
L
S
A
= –1  
V
P-P  
R
A
= 1  
V
0.01  
A
= 10  
= 1  
V
0.001  
A
V
V
= ±15V  
S
0
0.0001  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
1213/14 G14  
1213/14 G13  
1213/14 G15  
9
LT1213/LT1214  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Open-Loop Voltage Gain  
vs Supply Voltage  
Positive Output Saturation  
Voltage vs Temperature  
Open-Loop Gain, VS = 5V  
6k  
5k  
4k  
3k  
2k  
1k  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
R
= 2k  
V
= 5V  
L
S
T
= –55°C  
= 25°C  
A
RL = 2k  
I
I
= 20mA  
= 10mA  
SOURCE  
T
A
SOURCE  
RL  
=
500Ω  
I
= 1mA  
SOURCE  
T
= 125°C  
A
I
= 10µA  
SOURCE  
0
1
2
3
4
OUTPUT (V)  
1213/14 G17  
0
4
8
12 16 20 24 28 32 36  
50  
100 125  
–50 –25  
0
25  
75  
TOTAL SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
1213/14 G16  
1213/14 G18  
Negative Output Saturation  
Voltage vs Temperature  
Voltage Gain vs Load Resistance  
Open-Loop Gain, VS = ±15V  
10k  
1k  
1000  
100  
10  
I
= 30mA  
T
= 25°C  
SINK  
A
RL = 2k  
V
= ±15V  
S
I
= 10mA  
= 1mA  
SINK  
I
V
= 5V  
SINK  
S
RL =  
500Ω  
100  
10  
I
= 10µA  
SINK  
–10  
0
10  
OUTPUT (V)  
1213/14 G20  
V
= 5V  
S
1
10  
100  
1k  
10k  
–50 –25  
0
25  
50  
75 100 125  
LOAD RESISTANCE ()  
TEMPERATURE (°C)  
1213/14 G21  
1213/14 G19  
Output Short-Circuit Current  
vs Temperature  
Channel Separation vs Frequency  
Output Impedance vs Frequency  
140  
130  
120  
110  
100  
90  
70  
60  
50  
40  
30  
1000  
100  
10  
V
= ±15V  
= 25°C  
V
= ±15V  
S
A
S
T
V
= 5V  
S
SOURCING  
80  
1
A
= 100  
V
70  
V
= ±15V  
S
SOURCING  
60  
OR SINKING  
0.1  
0.01  
A = 1  
V
A
= 10  
50  
V
40  
30  
1M  
10M  
10k  
100k  
1M  
10M  
10k  
100k  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1213/14 G22  
1213/14 G24  
1213/14 G23  
10  
LT1213/LT1214  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
5V Large-Signal Response  
5V Large-Signal Response  
5V Small-Signal Response  
3V  
3V  
0V  
0V  
200ns/DIV  
200ns/DIV  
50ns/DIV  
VS = 5V  
AV = 1  
VS = 5V  
V
S = 5V  
1213/14 G26  
AV = –1  
AV = 1  
1213/14 G25  
RF = RG = 1k  
CF = 20pF  
1213/14 G27  
±15V Large-Signal Response  
±15V Large-Signal Response  
±15V Small-Signal Response  
10V  
0V  
10V  
0V  
–10V  
–10V  
1µs/DIV  
1µs/DIV  
50ns/DIV  
VS = ±15V  
VS = ±15V  
VS = ±15V  
AV = 1  
A
V = 1  
1213/14 G29  
AV = –1  
1213/14 G28  
RF = RG = 1k  
1213/14 G30  
Settling Time to 0.01%  
vs Output Step  
±15V Settling  
5V Settling  
10  
8
V
= ±15V  
S
6
NONINVERTING  
INVERTING  
4
2
0
–2  
–4  
–6  
–8  
–10  
INVERTING  
100ns/DIV  
200ns/DIV  
VS = 5V  
VS = ±15V  
V = –1  
NONINVERTING  
A
V = 1  
1213/14 G31  
A
1213/14 G32  
300 400  
600  
800 900  
1100  
1000  
500  
700  
SETTLING TIME (ns)  
1213/14 G33  
11  
LT1213/LT1214  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Supply Current vs Supply Votage  
Supply Current vs Temperature  
Warm-Up Drift vs Time  
4
3
2
1
0
4.2  
3.8  
3.4  
3.0  
2.6  
2.2  
1.8  
2
1
V
S
= ±15V  
T
= 125°C  
A
T
A
= 25°C  
0
T
A
= –55°C  
V
S
= 5V  
–1  
–2  
V
= 5V  
S
R
= ∞  
L
2 TYPICAL AMPLIFIERS  
25  
TEMPERATURE (°C)  
–50  
0
50  
75 100 125  
–25  
0
1
2
3
4
5
0
20  
40  
60  
80  
100  
SUPPLY VOLTAGE (V)  
TIME AFTER POWER-UP (SEC)  
1213/14 G34  
1213/14 G35  
1213/14 G36  
Input Bias Current vs  
Common Mode Range  
vs Temperature  
Input Bias Current vs Temperature  
Common Mode Voltage  
+
0
–20  
V
110  
105  
100  
95  
V
S
= 5V  
V
S
= 5V  
+
–40  
V –1  
–60  
T
= 25°C  
A
T
= 125°C  
= –55°C  
A
–80  
I
OS  
+
V –2  
–100  
–120  
–140  
–160  
–180  
–200  
–I  
B
T
A
V +1  
90  
85  
+I  
B
V
80  
V –1  
75  
–1  
0
1
2
3
4
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
COMMON MODE VOLTAGE (V)  
1213/14 G38  
1213/14 G39  
1213/14 G37  
Input Noise Current, Noise  
Voltage Density vs Frequency  
Common Mode Rejection Ratio  
vs Frequency  
Input Referred Power Supply  
Rejection Ratio vs Frequency  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
20  
18  
16  
14  
12  
10  
8
130  
120  
110  
100  
90  
120  
110  
100  
90  
V
T
= ±15V  
= 25°C  
= 0Ω  
V
A
= ±15V  
= 100  
S
V
= 5V  
S
V
S
A
R
S
80  
POSITIVE SUPPLY  
VOLTAGE NOISE  
CURRENT NOISE  
80  
70  
70  
60  
6
60  
50  
4
50  
40  
NEGATIVE SUPPLY  
2
40  
30  
0
30  
20  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
1k  
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1213/14 G40  
1213/14 G42  
1213/14 G41  
12  
LT1213/LT1214  
O U  
W
U
PPLICATI  
S I FOR ATIO  
A
For example, calculate the worst case power dissipation  
whileoperatingon±15Vsuppliesanddrivinga500load.  
Supply Voltage  
The LT1213/LT1214 op amps are fully functional and all  
internal bias circuits are in regulation with 2.2V of supply.  
The amplifiers will continue to function with as little as  
1.5V, although the input common mode range and the  
phase margin are about gone. The minimum operating  
supply voltage is guaranteed by the PSRR tests which are  
done with the input common mode equal to 500mV and a  
minimum supply voltage of 2.5V. The LT1213/LT1214 are  
guaranteed over the full 55°C to 125°C range with a  
minimum supply voltage of 2.5V.  
ISMAX = 4.2 + 0.048 × (30 – 5) = 5.4mA  
P
DMAX = 2 × VS × ISMAX + (VS – VOMAX) × VOMAX/RL  
PDMAX = 2 × 15V × 5.4mA + (15V – 7.5V) × 7.5V/500  
= 0.162 + 0.113 = 0.275 Watt per Amp  
If this is the dual LT1213, the total power in the package is  
twice that, or 0.550W. Now calculate how much the die  
temperature will rise above the ambient. The total power  
dissipation times the thermal resistance of the package  
gives the amount of temperature rise. For this example, in  
theSO-8surfacemountpackage, thethermalresistanceis  
150°C/W junction-to-ambient in still air.  
The positive supply pin of the LT1213/LT1214 should be  
bypassed with a small capacitor (about 0.01µF) within an  
inch of the pin. When driving heavy loads and for good  
settling time, an additional 4.7µF capacitor should be  
used. When using split supplies, the same is true for the  
negative supply pin.  
TemperatureRise = PDMAX × θJA = 0.550W × 150°C/W  
= 82.5°C  
The maximum junction temperature allowed in the plastic  
package is 150°C. Therefore the maximum ambient al-  
lowed is the maximum junction temperature less the  
temperature rise.  
Power Dissipation  
The LT1213/LT1214 amplifiers combine high speed and  
large output current drive into very small packages. Be-  
causetheseamplifiersworkoveraverywidesupplyrange,  
itispossibletoexceedthemaximumjunctiontemperature  
under certain conditions. To insure that the LT1213/  
LT1214 are used properly, calculate the worst case power  
dissipation, define the maximum ambient temperature,  
select the appropriate package and then calculate the  
maximum junction temperature.  
Maximum Ambient = 150°C – 82.5°C = 67.5°C  
That means the SO-8 dual can be operated at or below  
67.5°C on ±15V supplies with a 500load.  
As a guideline to help in the selection of the LT1213/  
LT1214, the following table describes the maximum sup-  
ply voltage that can be used with each part based on the  
following assumptions:  
1. The maximum ambient is 70°C or 125°C depending on  
the part rating.  
The worst case amplifier power dissipation is the total of  
the quiescent current times the total power supply voltage  
plus the power in the IC due to the load. The quiescent  
supply current of the LT1213/LT1214 has a positive tem-  
perature coefficient. The maximum supply current of each  
amplifier at 125°C is given by the following formula:  
2. The load is 500including the feedback resistors.  
3. The output can be anywhere between the supplies.  
PART  
MAX SUPPLIES  
MAX POWER AT MAX T  
A
I
SMAX = 4.2 + 0.048 × (VS – 5) in mA  
LT1213MJ8  
LT1213CN8  
LT1213CS8  
LT1214CN  
LT1214CS  
18.0V or ±14.1V  
23.7V or ±18.0V  
18.7V or ±14.7V  
19.5V or ±15.4V  
15.8V or ±12.2V  
500mW  
800mW  
533mW  
1143mW  
800mW  
VS is the total supply voltage.  
The power in the IC due to the load is a function of the  
outputvoltage,thesupplyvoltageandloadresistance.The  
worst case occurs when the output voltage is at half  
supply, if it can go that far, or its maximum value if it  
cannot reach half supply.  
13  
LT1213/LT1214  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Inputs  
positive rail, is about 100as the output starts to source  
current; this resistance drops to about 20as the current  
increases. Therefore when the output sources 1mA, the  
output will swing to within 0.7V of the positive supply.  
While sourcing 30mA, it is within 1.25V of the positive  
supply.  
Typically at room temperature, the inputs of the LT1213/  
LT1214 can common mode 400mV below ground (V)  
and to within 1.2V of the positive supply with the amplifier  
still functional. However, the input bias current and offset  
voltage will shift as shown in the characteristic curves. For  
full precision performance, the common mode range  
shouldbelimitedbetweenground(V)and1.5Vbelowthe  
positive supply.  
When either of the inputs is taken below ground (V) by  
more than about 700mV, that input current will increase  
dramatically. The current is limited by internal 100Ω  
resistors between the input pins and diodes to each  
supply. The output will remain low (no phase reversal) for  
inputs1.3Vbelowground(V).Iftheoutputdoesnothave  
to sink current, such as in a single supply system with a 1k  
load to ground, there is no phase reversal for inputs up to  
8V below ground.  
TheoutputoftheLT1213/LT1214willswingtowithin4mV  
of the negative supply while sinking zero current. Thus, in  
a typical single supply application with the load going to  
ground, the output will go to within 4mV of ground. The  
open-loop output resistance when the output is driven  
hardintothenegativerailisabout29atlowcurrentsand  
reduces to about 23at high currents. Therefore when  
the output sinks 1mA, the output is about 33mV above the  
negative supply and while sinking 30mA, it is about  
690mV above it.  
The output of the LT1213/LT1214 has reverse-biased  
diodestoeachsupply. Iftheoutputisforcedbeyondeither  
supply, unlimited currents will flow. If the current is  
transient and limited to several hundred mA, no damage  
will occur.  
There are no clamps across the inputs of the LT1213/  
LT1214 and therefore each input can be forced to any  
voltage between the supplies. The input current will re-  
main constant at about 100nA over most of this range.  
Whenaninputgetscloserthan1.5Vtothepositivesupply,  
that input current will gradually decrease to zero until the  
inputgoesabovethesupply, thenitwillincreaseduetothe  
previously mentioned diodes. If the inverting input is held  
more positive than the noninverting input by 200mV or  
more, while at the same time the noninverting input is  
within 300mV of ground (V), then the supply current will  
increase by 2mA and the noninverting input current will  
increase to about 10µA. This should be kept in mind in  
comparator applications where the inverting input stays  
above ground (V) and the noninverting input is at or near  
ground (V).  
Feedback Components  
Because the input currents of the LT1213/LT1214 are less  
than 200nA, it is possible to use high value feedback  
resistors to set the gain. However, care must be taken to  
insure that the pole that is formed by the feedback resis-  
tors and the input capacitance does not degrade the  
stability of the amplifier. For example, if a single supply,  
noninverting gain of two is set with two 10k resistors, the  
LT1213/LT1214 will probably oscillate. This is because  
the amplifier goes open-loop at 6MHz (6dB of gain) and  
has 45° of phase margin. The feedback resistors and the  
10pF input capacitance generate a pole at 3MHz that  
introduces 63° of phase shift at 6MHz! The solution is  
simple, lower the values of the resistors or add a feedback  
capacitor of 10pF or more.  
Output  
The output of the LT1213/LT1214 will swing to within  
0.61V of the positive supply with no load. The open-loop  
output resistance, when the output is driven hard into the  
14  
LT1213/LT1214  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
following photos. These amplifiers are unity-gain stable  
op amps and not fast comparators, therefore, the logic  
being driven may oscillate due to the long transition time.  
The output can be speeded up by adding 20mV or more of  
hysteresis (positive feedback), but the offset is then a  
function of the input direction.  
Comparator Applications  
Sometimes it is desirable to use an op amp as a compara-  
tor. When operating the LT1213/LT1214 on a single 3.3V  
or 5V supply, the output interfaces directly with most TTL  
and CMOS logic.  
The response time of the LT1213/LT1214 is a strong  
function of the amount of input overdrive as shown in the  
LT1213 Comparator Response (+)  
20mV, 10mV, 5mV, 2mV Overdrives  
LT1213 Comparator Response (–)  
20mV, 10mV, 5mV, 2mV Overdrives  
4
2
0
4
2
0
100  
0
100  
0
5µs/DIV  
5µs/DIV  
VS = 5V  
RL  
1213/14 AI01  
VS = 5V  
RL  
1213/14 AI02  
=
=
W
W
SI PLIFIED SCHE ATIC  
+
V
I
6
I
1
I
4
I
3
I
5
I
2
Q13  
BIAS  
C
M
Q14  
Q4  
Q3  
Q15  
–IN  
+IN  
Q11  
Q1  
OUT  
Q2  
R
F
Q12  
Q7  
Q9  
C
F
Q10  
Q8  
Q16  
Q5  
Q6  
C
O
I
7
I
8
C
I
V
1213/14 SS  
15  
LT1213/LT1214  
U
PACKAGE DESCRIPTIO  
J8 Package  
8-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-08-1110)  
0.405  
(10.287)  
MAX  
CORNER LEADS OPTION  
(4 PLCS)  
0.005  
(0.127)  
MIN  
6
5
4
8
7
0.023 – 0.045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
0.025  
0.220 – 0.310  
(5.588 – 7.874)  
0.045 – 0.068  
(0.635)  
RAD TYP  
(1.143 – 1.727)  
FULL LEAD  
OPTION  
1
2
3
0.200  
(5.080)  
MAX  
0.300 BSC  
(0.762 BSC)  
0.015 – 0.060  
(0.381 – 1.524)  
0.008 – 0.018  
(0.203 – 0.457)  
0° – 15°  
0.045 – 0.065  
(1.143 – 1.651)  
0.125  
3.175  
MIN  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
0.014 – 0.026  
(0.360 – 0.660)  
0.100  
(2.54)  
BSC  
J8 1298  
OBSOLETE PACKAGE  
16  
LT1213/LT1214  
U
PACKAGE DESCRIPTIO  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
8
7
6
5
4
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
3
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
0.325  
–0.015  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
–0.381  
N8 1098  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
N Package  
14-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
0.770*  
(19.558)  
MAX  
14  
13  
12  
11  
10  
9
8
7
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
3
5
6
4
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.020  
(0.508)  
MIN  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
+0.035  
0.325  
0.005  
(0.125)  
MIN  
–0.015  
0.125  
(3.175)  
MIN  
0.018 ± 0.003  
+0.889  
8.255  
(0.457 ± 0.076)  
0.100  
(
)
–0.381  
(2.54)  
BSC  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
N14 1098  
17  
LT1213/LT1214  
U
PACKAGE DESCRIPTIO  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
SO8 1298  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
18  
LT1213/LT1214  
U
PACKAGE DESCRIPTIO  
S Package  
16-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
0.386 – 0.394*  
(9.804 – 10.008)  
16  
15  
14  
13  
12  
11  
10  
9
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
5
7
8
1
2
3
4
6
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0° – 8° TYP  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
0.016 – 0.050  
(0.406 – 1.270)  
S16 1098  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
InformationfurnishedbyLinearTechnologyCorporationisbelievedtobeaccurateandreliable.However,  
no responsibility is assumed for its use. Linear Technology Corporation makes no representation that  
the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LT1213/LT1214  
U
O
TYPICAL APPLICATI S  
Instrumentation Amplifier with Guard/Shield Driver and Input Bias Current Cancellation  
+
V
0.1µF  
+
1/4  
LT1214  
A
1k  
10k**  
1M  
GUARD  
Input Bias Current vs  
Common Mode Voltage  
R
F
1020Ω  
+
100  
80  
60  
40  
20  
0
R
G
+
113Ω  
V
= 5V  
+
+
1/4  
200Ω  
1/4  
LT1214  
B
INPUTS  
5000pF  
LT1214  
C
OUTPUT  
1M*  
R
113Ω  
G
1M  
22pF  
GUARD  
R
F
1020Ω  
1/4  
1k  
10k  
LT1214  
D
0.01  
0.1  
1
10  
COMMON MODE VOLTAGE (V)  
+
1213/14 TA03a  
1213/14 TA03b  
* TRIM FOR INPUT BIAS CURRENT  
** TRIM FOR CMRR  
COMMON MODE R = 3G  
IN  
R
F
GAIN = 10 1 +  
= 100  
DIFFERENTIAL R = 2M  
IN  
(
)
R
G
BANDWIDTH = 2MHz  
t = 170ns  
r
Ground Current Sense Amplifier  
Difference Amplifier with Wide Input Common Mode Range  
+
V
+
V
3.3V  
5V  
V
750Ω  
REF  
0.1µF  
1.2V  
LOAD  
0.1µF  
LT1004-1.2  
10k 1k  
+
1/2  
10k  
V
= 1V/A  
O
LT1213  
+
+IN  
–IN  
I
IN  
1/2  
LT1213  
1k  
V
OUT  
OFFSET 5.5mA  
0.05Ω  
10k  
BANDWIDTH = 500kHz  
1910Ω  
t = 1µs  
r
10k  
100Ω  
100pF  
1213/14 TA04  
GAIN = 1; V  
= V  
FOR V  
= 0  
IN(DIF)  
OUT  
REF  
±10V COMMON MODE RANGE  
1213/14 TA05  
BANDWIDTH = 3MHz  
RELATED PARTS  
PART NUMBER  
LT1211/LT1212  
LT1215/LT1216  
LT1630/LT1631  
DESCRIPTION  
COMMENTS  
14MHz, 7V/µs Single Supply Dual and Quad Precision Op Amps  
23MHz, 50V/µs Single Supply Dual and Quad Precision Op Amps  
Half the Supply Current of the LT1213  
Four Times the Slew Rate of the LT1213  
Rail-to-Rail LT1213  
30MHz, 10V/µs Dual and Quad Rail-to-Rail  
Input and Output Precision Op Amps  
12134fa LT/CP 1001 1.5K REV A • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1993  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY